Machinery Lubrication

Machinery Lubrication Nov Dec 2013

Machinery Lubrication magazine published by Noria Corporation

Issue link: https://www.e-digitaleditions.com/i/229047

Contents of this Issue

Navigation

Page 49 of 81

tions, these would be considered "exception" tests. Routine tests vary based on the originating component and environmental conditions but should almost always include tests for viscosity, elemental (spectrometric) analysis, moisture levels, particle counts, Fourier transform infrared (FTIR) spectroscopy and acid number. Other tests that are based on the originating equipment include analytical ferrography, ferrous density, demulsibility and base number testing. Limits for changes in the viscosity depend on the type of lubricant being analyzed but most often have a marginal limit of approximately 10 percent and a critical limit of approximately 20 percent higher or lower than the intended viscosity. Acid Number/Base Number The table above shows how tests are utilized in each of the three main oil analysis categories. Acid number and base number tests are similar but are used to interpret different lubricant and contaminant-related questions. In an oil analysis test, the acid number is the concentration of acid in the oil, while the base number is the reserve of alkalinity in the oil. Results are expressed in terms of the volume of potassium hydroxide in milligrams required to neutralize the acids in one gram of oil. Acid number testing is primarily performed on non-crankcase oils, while base number testing is mainly for over-based crankcase oils. An acid number that is too high or too low may be the result of oil oxidation, the presence of an incorrect lubricant or additive depletion. A base number that is too low can indicate high engine blow-by conditions (fuel, soot, etc.), the presence of an incorrect lubricant, internal leakage contamination (glycol) or oil oxidation from extended oil drain intervals and/or extreme heat. Viscosity FTIR Several methods are used to measure viscosity, which is reported in terms of kinematic or absolute viscosity. While most industrial lubricants classify viscosity in terms of ISO standardized viscosity grades (ISO 3448), this does not imply that all lubricants with an ISO VG 320, for example, are exactly 320 centistokes (cSt). According to the ISO standard, each lubricant is considered to be a particular viscosity grade as long as it falls within 10 percent of the viscosity midpoint (typically that of the ISO VG number). Viscosity is a lubricant's most important characteristic. Monitoring the oil's viscosity is critical because any changes can lead to a host of other problems, such as oxidation, glycol ingression or thermal stressors. Too high or too low viscosity readings may be due to the presence of an incorrect lubricant, mechanical shearing of the oil and/or the viscosity index improver, oil oxidation, antifreeze contamination, or an influence from fuel, refrigerant or solvent contamination. FTIR is a quick and sophisticated method for determining several oil parameters including contamination from fuel, water, glycol and soot; oil degradation products like oxides, nitrates and sulfates; as well as the presence of additives such as zinc dialkyldithiophosphate (ZDDP) and phenols. The FTIR instrument OIL ANALYSIS CATEGORY TESTS Fluid Properties Viscosity, Acid/Base Number, FTIR, Elemental Analysis Contamination Particle Counting, Moisture Analysis, Elemental Analysis Wear Debris Ferrous Density, FTIR, Elemental Analysis 32% of lubrication professionals would not understand how to interpret an oil analysis report from a commercial laboratory, based on a recent poll at MachineryLubrication.com www.machinerylubrication.com | November - December 2013 | 47

Articles in this issue

Links on this page

Archives of this issue

view archives of Machinery Lubrication - Machinery Lubrication Nov Dec 2013